Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

110 Ton Payload on Two Axles with Hydro-Mechanical Drive

1966-02-01
660237
Late developments in tires and in lightweight, high horsepower engines and transmissions have enabled the earthmoving and mining industry equipment manufacturers to design and produce several types of preproduction 100-ton capacity trucks. A straight-forward approach to the design of a 110-ton end dump truck on two axles with a hydro-mechanical drive was followed by KW-Dart Truck Co. to produce a low cost per ton-mile vehicle.
Technical Paper

12V/14V to 36V/42V Automotive System Supply Voltage Change and the New Technologies

2002-11-19
2002-01-3557
This paper shows some aspects of the automotive voltage energy system level shift from 14 to 42 Volts. New features and prospective emissions/fuel economy requirements are creating electrical power needs in future automobiles, which today's conventional system cannot adequately supply at 14 Vdc (nominal, with a 12 Volt battery). It will be necessary to provide electric motors, DC/DC converters, inverters, battery management, and other electronic controls to meet higher voltage requirements. Suppliers must now include 42 Volt components and systems within their product range and make these new components as light, small, and cost efficient as possible. This paper is a compilation of several published works aiming to offer a synthesis to introduce this subject to the Brazilian Automotive Market.
Technical Paper

1978 U. S. Automotive Service Market: How Large is Large?

1981-02-01
810054
The size of the 1978 automotive service market is the total dollars spent on car and truck repair and maintenance in 1978. The 1978 personal-use automotive service market is the retail dollars spent in 1978 on repair and maintenance for cars and trucks used primarily for personal transportation. Service market estimates in this report do not include body repair parts and body repairs. Bureau of Economic Analysis data indicate a personal-use service market, excluding do-it-yourself (DIY) service, of $36 billion. A similar estimate made by General Motors Research Laboratories, based on a large national survey of actual consumer expenditures, is $ 37 billion. The personal-use automotive service market, excluding DIY, is roughly 3/4's the size of the total automotive service market, based on data from the Motor and Equipment Manufacturers Association and Frost & Sullivan, Inc.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1997 Propane Vehicle Challenge Design Strategy -University of Waterloo

1998-02-23
980491
The conversion design strategy, and emissions and performance results for a dedicated propane, vapour injected, 1995 Dodge Dakota truck are reported. Data is obtained from the University of Waterloo entry in the 1997 Propane Vehicle Challenge. A key feature of the design strategy is its focus on testing and emissions while preserving low engine speed power for drivability. Major changes to the Dakota truck included the following: installation of a custom shaped fuel tank, inclusion of a fuel temperature control module, addition of a vaporizer and a fuel delivery metering unit, installation of a custom vapour distribution manifold, addition of an equivalence ratio electronic controller, inclusion of a wide range oxygen sensor, addition of an exhaust gas recirculation cooler and installation of thermal insulation on the exhaust system. A competition provided natural gas catalyst was used.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

1D Modeling of the Hydrodynamics and of the Regeneration Mechanism in Continuous Regenerating Traps

2006-09-14
2006-01-3011
The present work focuses on the simulation of the hydrodynamics, transient filtration/loading and catalytic/NO2-assisted regeneration of Diesel after-treatment systems. A 1D unsteady model for compressible and reacting flows for the numerical simulation of the behavior of Diesel Oxidation Catalysts (DOCs) and Diesel Particulate Filters (DPFs) has been developed. The numerical model is able to keep track of the amount of soot in the flow; the increasing of back-pressure through the exhaust system (mainly due to the Diesel Particulate Filter) can be predicted by the calculation of the permeability variation of the porous wall, as the soot particles goes inside the DPF. A sub-model for the regeneration of the collected soot has been developed: the collected particulate is oxidized by the Oxygen (O2) and by the Nitrogen Dioxide (NO2).
Technical Paper

1D Modelling of Reactive Fluid Dynamics, Cold Start Behavior of Exhaust Systems

2006-04-03
2006-01-1544
The introduction of more stringent standards for engine emissions requires a steady development of exhaust gas aftertreatment in addition to an optimized cylinder combustion. The reduction of the cold start phase can help significantly to lower cycle emissions. With the goal of optimizing the overall emission performance this study presents a comprehensive simulation approach. A well established 1D gas dynamics and engine simulation model is extended by three key features. These are models for combustion and pollutant production in the cylinder, models for the pollutant conversion in a catalyst, and a general species transport model. This allows to consider an arbitrary number of chemical species and reactions in the entire system.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

2-Cycle Engine Exhaust Control Device

1991-11-01
911228
Motorcycles, as an international market product, must satisfy increasingly diverse user needs. These demands lead to various improvements being added and new systems and mechanisms being developed in an effort to arrive at an ideal product concept. Since the two-cycle engine offers particular advantages in combining light weight and compact size with a high output level, attention is focused on this type of engine for use in motorcross bikes and compact sports models. One drawback of the two-cycle engine, however, is that the output characteristic is sharply divided into low-speed and high-speed types. In order to overcome this disadvantage, motorcycle manufacturers are developing exhaust devices which will boost low-speed torque without sacrificing high-speed output. This presentation will describe some of the development and applications concerning exhaust devices already underway at Suzuki.
Journal Article

2-D Internal EGR Distribution Measurements in an Engine by Laser-Induced Fluorescence

2013-04-08
2013-01-0556
A novel diagnostic technique named a “Tracer-Producing LIF technique” which enables 2-dimensional measurement of an internal EGR within an engine cylinder, has been developed. The main feature of this technique is the utilization of a fuel additive that does not itself emit an LIF signal by irradiation of UV-light but whose combustion products radiate strong LIF emissions by UV-light irradiation. Internal EGR behaviors can be measured by observing LIF images that are excited by a UV-laser sheet. Firstly, principles of this technique were confirmed and fuel additives were selected. Then, the “Tracer-Producing LIF technique” was applied to an optically accessible single-cylinder gasoline engine in which the entire pent-roof area can be observed from the side of the engine. The internal EGR behaviors were measured through the entire engine cycle, from intake to exhaust.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2005 Ford GT - Interior Trim & Electrical

2004-03-08
2004-01-1256
Driven by a tight vehicle development schedule and unique performance and styling goals for the new Ford GT, a Ford-Lear team delivered a complete interior and electrical package in just 12 months. The team used new materials, processes and suppliers, and produced what may be the industry's first structural instrument panel.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
X